RES.6-002 | Spring 2008 | Undergraduate

Electromagnetic Field Theory: A Problem Solving Approach

Course Description

This text is an introductory treatment on the junior level for a two-semester electrical engineering course starting from the Coulomb-Lorentz force law on a point charge. The theory is extended by the continuous superposition of solutions from previously developed simpler problems leading to the general integral and …
This text is an introductory treatment on the junior level for a two-semester electrical engineering course starting from the Coulomb-Lorentz force law on a point charge. The theory is extended by the continuous superposition of solutions from previously developed simpler problems leading to the general integral and differential field laws. Often the same problem is solved by different methods so that the advantages and limitations of each approach becomes clear. Sample problems and their solutions are presented for each new concept with great emphasis placed on classical models of physical phenomena such as polarization, conduction, and magnetization. A large variety of related problems that reinforce the text material are included at the end of each chapter for exercise and homework.
Learning Resource Types
Online Textbook
Problem Sets with Solutions
Drawing of a 3-pole magnet with electromagnetic wave sinusoids connecting the three ends.
Whimsical optical illusion drawing of a non-physical 3 pole magnet with electromagnetic wave sinusoids connecting magnet poles representing the study of electromagnetic fields and applications in this course. (Image by Prof. Markus Zahn. Used with permision)